
Capturing Word Order in Averaging Based Sentence
Embeddings

Jae Hee Lee1 and Jose Camacho Collados2 and Luis Espinosa Anke3 and Steven Schockaert4

Abstract. One of the most remarkable findings in the literature on
sentence embeddings has been that simple word vector averaging can
compete with state-of-the-art models in many tasks. While counter-
intuitive, a convincing explanation has been provided by Arora et al.,
who showed that the bag-of-words representation of a sentence can be
recovered from its word vector average with almost perfect accuracy.
Beyond word vector averaging, however, most sentence embedding
models are essentially black boxes: while there is abundant empirical
evidence about their strengths and weaknesses, it is not clear why
and how different embedding strategies are able to capture particular
properties of sentences. In this paper, we focus in particular on how
sentence embedding models are able to capture word order. For in-
stance, it seems intuitively puzzling that simple LSTM autoencoders
are able to learn sentence vectors from which the original sentence
can be reconstructed almost perfectly. With the aim of elucidating
this phenomenon, we show that to capture word order, it is in fact
sufficient to supplement standard word vector averages with averages
of bigram and trigram vectors. To this end, we first study the problem
of reconstructing bags-of-bigrams, focusing in particular on how suit-
able bigram vectors should be encoded. We then show that LSTMs are
capable, in principle, of learning our proposed sentence embeddings.
Empirically, we find that our embeddings outperform those learned
by LSTM autoencoders on the task of sentence reconstruction, while
needing almost no training data.

1 Introduction

Sentence embeddings are vector representations that capture the mean-
ing of a given sentence. Several authors have empirically found that
surprisingly high-quality sentence embeddings can be obtained by
simply adding up the word vectors from a given sentence [29], some-
times in combination with particular weighting and post-processing
strategies [3]. Since word vectors are typically compared in terms of
their cosine similarity, summing up word vectors corresponds to a
form of averaging (i.e. the direction of the resulting sum averages the
direction of the individual word vectors). For this reason, we refer
to this class of methods as averaging based sentence embeddings.
Recently, [2] has shed some light on the remarkable effectiveness of
averaging based embeddings, using insights from the theory of com-
pressed sensing. Essentially the paper showed that from a given sum
of word vectors, it is almost always possible to reconstruct the corre-
sponding bag-of-words representation, as long as the dimensionality
of the vectors is sufficiently high relative to the length of the sentence.

1 Cardiff University, UK, email: leejh3@cardiff.ac.uk
2 Cardiff University, UK, email: camachocolladosj@cardiff.ac.uk
3 Cardiff University, UK, email: espinosa-ankel@cardiff.ac.uk
4 Cardiff University, UK, email: schockaerts1@cardiff.ac.uk

Despite the fact that word vector averages are thus far more expres-
sive than they may intuitively appear, they obviously cannot capture
information about word order. While this only affects their ability to
capture sentence similarity in a minimal way [3], it is nonetheless an
important limitation of such representations.

Beyond averaging based strategies, even relatively standard neural
network models are able to learn sentence embeddings which cap-
ture word order nearly perfectly. For instance, LSTM autoencoders
learn an encoder, which maps a sequence of words onto a sentence
vector, together with a decoder, which aims to reconstruct the original
sequence from the sentence vector. While empirical results clearly
show that such architectures can produce sentence vectors that capture
word order, from an intuitive point of view it remains puzzling that
such vectors can arise from a relatively simple manipulation of word
vectors. The aim of this paper is to develop a better understanding of
how order-encoding sentence vectors can arise in such a way. In partic-
ular, we want to find the simplest extension of word vector averaging
which is sufficient for learning sentence vectors that capture word
order. To this end, we follow the following intuition: since averages
of word vectors allow us to recover the bag-of-words representation
of a sentence [3], averages of bigram vectors may allow us to recover
the bag-of-bigrams, and similar for longer n-grams. This paper makes
the following three main contributions:

1. We present an in-depth study about how bigrams should be en-
coded to maximize the probability that bags-of-bigrams can be
reconstructed from the corresponding bigram vector averages (Sec-
tion 3).

2. We empirically show that simply concatenating averaged vector
representations of unigrams, bigrams and trigrams gives us sen-
tence embeddings from which the original sentence can be recov-
ered more faithfully than from sentence embeddings learned by
LSTM autoencoders (Section 4).

3. We show that LSTM architectures are capable of constructing such
concatenations of unigram, bigram and trigram averages. Even
though LSTM autoencoders in practice are unlikely to follow this
exact strategy, this clarifies why simple manipulations of word
vectors are sufficient for encoding word order (Section 5).5

2 Related Work

Sentence embedding is a widely-studied topic in the field of rep-
resentation learning. Similarly to the predictive objective of word
embedding models such as Skip-gram [18], recent unsupervised sen-
tence embedding models have based their architecture on predicting

5 The code for reproducing the results in the paper can be downloaded from
https://github.com/dschaehi/capturing-word-order

the following sentence, given a target sentence. A popular example
of this kind of model is Skip-Thought [15]. In this model a recur-
rent neural network is employed as part of a standard sequence to
sequence architecture for encoding and decoding. While using the
next sentence as a supervision signal has proved very powerful, one
disadvantage of this model is that it is computationally demanding.
For this reason, variations have been proposed which frame the ob-
jective as a classification task, instead of prediction, which allows
for more efficient implementations. A representative example of this
strategy is the quick thoughts model from [16]. As another line of
work, large pre-trained language models such as BERT have shown
strong performance in many downstream tasks [10], and are also able
to extract high-quality sentence embeddings [25]. In spite of these
advancements, [3] showed that a simple average of word embeddings
can lead to competitive performance, while being considerably more
transparent, computationally efficient, and lower-dimensional than
most other sentence embeddings. In this paper we focus on the latter
kind of approach.

To the best of our knowledge, the idea of capturing word order
using averaging based strategies has not previously been considered.
However, there is a considerable amount of work on averaging based
sentence embeddings, which we discuss in Section 2.1. There is also
some related work on capturing word order in sentence vectors, as we
discuss in Section 2.2.

2.1 Averaging Based Sentence Embeddings
Several extensions to the basic approach of word vector averaging
have already been proposed. For example, FastSent [12] learns word
vectors in such a way that the resulting averaging based sentence
vectors are predictive of the words that occur in adjacent sentences.
In this way, the supervision signal that is exploited by models such as
Skip-Thought can be exploited by averaging models as well. Simi-
larly, Siamese CBOW [14] also focuses on learning sentence vectors
that are good predictors for adjacent sentence vectors. Another line of
work has focused on changing the nature of the averaging operation.
For instance, [26] uses the family of power means in addition to the
standard arithmetic average, the intuition being that by concatenating
different averages different semantic properties are captured. Several
approaches have also been proposed for computing weighted averages
and for post-processing averaging based sentence vectors [3].

The use of n-grams in averaging based sentence embeddings has
previously been considered as well. The DisC [2] model is most sim-
ilar in spirit to our approach. They compute n-gram embeddings as
the component-wise multiplication of the constituent word vectors.
To represent sentences, they then concatenate averages of the bigram
and trigram vectors that are thus obtained, together with the usual
unigram averages. However, experimental results showed that the im-
pact of including these n-gram averages on downstream applications
was limited. Other approaches aim to learn semantically meaningful
representations of frequent n-grams by learning them directly from
co-occurrence statistics. Note that the word vectors of the constituent
words are thus not used to compute the n-gram vectors. An example
of such an approach is the Sent2Vec [21] model, which learns n-
gram vectors that are optimized for predicting which sentence vectors
include those embeddings.

2.2 Sentence Embeddings Capturing Word Order
While unigram averages clearly cannot capture any ordering informa-
tion directly, it should be noted that they can still sometimes allow

us to partially reconstruct the order in which words appear in the
sentence, by exploiting regularities in natural language, e.g. the fact
that certain words are more likely to appear at the start of a sentence
than at the end. The extent to which unigram averages can capture
information about word order in this way was analyzed in [1]. They
found that while unigram averages can to some extend correctly clas-
sify whether the order of a word pair in a sentence is switched (70%
accuracy), they lead to almost random predictions (51% accuracy)
when the task is to classify sentences whose bigrams are switched [9].
The latter result in particular indicates that unigram averages are not
helpful for reconstructing sentences.

The possibility of using n-gram averages in sentence embeddings
was already considered by Arora et al. [2], who constructed n-gram
vectors using component-wise multiplication of standard word vectors
(cf. Section 2.2). However, they focused on the usefulness of such n-
gram averages for measuring sentence similarity and did not consider
the sentence reconstruction task. As an alternative to using n-grams,
the ordinally forgetting strategy [30, 27] is also designed to capture
word order based on averaging. Their representations are weighted
averages of one-hot encodings, where the word at position i in a
sentence is weighted by αi for some constant α ∈]0, 1[. However,
while it is possible to reconstruct the initial sentence from the resulting
vector, due to the use of one-hot encodings, the dimensionality of this
vector is prohibitively high. In particular, this earlier work therefore
does not provide any real insights about how word order can be
captured in neural network models such as LSTMs, which rely on
dense vectors.

Finally, the popular transformer model [28] encodes positional
information by manipulating word vectors based on their position
in a sentence. While this manipulation is sufficient for capturing in-
formation about the position of words in deep networks based on
transformers, it is unclear whether such a strategy could be adapted to
work well with averaging based encodings. The main problem with
this strategy, in our setting, is that for a sentence with 25 words, the
number of candidate basis vectors to consider in the unigram recon-
struction step would increase 25-fold. Given that the performance of
the compressed sensing method crucially relies on the number of such
basis vectors (see Section 4), a straightforward application of position
encodings in the style of transformers would not be suitable.

3 Sentence Representation
In this section, we first discuss how sentences can be encoded us-
ing averages of unigram, bigram and trigram vectors (Section 3.1).
Intuitively, these averages allow us to recover the bag-of-words, bag-
of-bigrams and bag-of-trigrams representation of a given sentence.
When it comes to capturing word order, the bag-of-bigrams represen-
tation plays a central role, with trigrams only needed to resolve some
ambiguities. For this reason, in Section 3.2, we focus in particular on
different strategies for encoding bigram vectors from the constituent
word vectors. In Section 3.3 we then study the properties of these
different bigram encodings, focusing on how well we can predict
whether a given bigram vector is included in a bigram vector average.
In Section 4 we will then show how well these representations allow
us to recover the full sentence.

3.1 Averaging Based Sentence Vectors
Consider a sentence S = w1w2 . . . w` and let wi be the word vector
for wi. We write U(S), B(S) and T (S) for the bags of unigrams,
bigrams and trigrams from S, i.e., U(S) = {w1, . . . , w`}, B(S) =

{(w1, w2), (w2, w3), . . . , (w`−1, w`)} and T (S) = {(w1, w2, w3),
(w2, w3, w4), . . . , (w`−2, w`−1, w`)}. We respectively write Sn for
the n-gram based representation of S:

S1 =
∑̀
i=1

wi S2 =

`−1∑
i=1

f(wi,wi+1)

S3 =

`−2∑
i=1

f(wi,wi+1,wi+2)

for some n-gram encoding function f . Our main aim is to study
sentence embeddings of the form S1 ⊕ S2 ⊕ S3, where we write ⊕
for vector concatenation. Since we can usually retrieve the bag-of-
words representation of the sentence from S1, the main question is
whether we can construct S2 and S3 such that the set of all bigrams
and trigrams from S can be retrieved. Note that while including S1

may seem redundant, to effectively recover the bigrams from S2 we
will first need to recover the bag-of-words representation from S1

(see Section 4). Intuitively, by recovering the bigrams we can already
reconstruct a large part of the sentence. The following result clarifies
under what conditions reconstructing the bigrams alone is sufficient.

Proposition 1. Assume that (i) no word occurs three or more times
in S, and (ii) at most one word occurs twice in S. Then it holds that
S is uniquely determined by B(S).

Proof. First suppose that no word occurs more than once. Then we
can uniquely determine the first word w1 from the sentence, because
this will be the only word that does not occur as the second argu-
ment in any of the elements from B(S). Moreover, we can also
uniquely determine the second word, as there will only be one el-
ement in B(S) that has w1 as the first argument. Continuing in
this way, we can reconstruct the entire sentence. If no word occurs
more than once, it is straightforward to see that B(S) uniquely de-
termines S. Now suppose there is a word a that is repeated, i.e.,
S = w1 . . . wi−1awi+1 . . . wj−1awj+1 . . . w`. Similar as before,
we can uniquely determine the sequence w1 . . . a. (Also in the case
where a is the first word of the sentence). By symmetry, we can also
uniquely determine the sequence awj+1 . . . w`. In this way, we can
uniquely determine wi+1 as the successor of the first occurrence of a,
and complete the reconstruction of the sentence.

As an example where the conditions of the proposition are not satisfied,
given B(S) = {(a, b), (a, c), (b, a), (c, a)} we could have abaca or
acaba. Such ambiguities can almost always be avoided by additionally
considering trigrams, although in some cases also higher-order n-
grams would be needed, i.e. if the same bigram is repeated three or
more times in the sentence, or if there is more than one bigram that
occur at least twice. However, as the empirical results will show, such
situations are rare in practice, which is why we will not consider
higher-order n-grams.

To encode trigrams, for simplicity we will only consider the choice
f(w1,w2,w3) = w1 �w2 �w3, as proposed by [2], where we
write� for the component-wise product. Note that this encoding does
not capture in which order the three words appear, but since we only
need the trigram averages to resolve ambiguities, this is sufficient for
our purpose. We now turn to the question of how bigrams should be
encoded.

3.2 Bigram Representation
We now discuss different strategies for encoding bigram vec-
tors. One possibility is to again use the component-wise product,

i.e. f�(w,w′) = w � w′ = (x1y1, . . . , xdyd), where w =
(x1, . . . , xd) and w′ = (y1, . . . , yd). Note that with this choice we
cannot differentiate between a given sentence w1 . . . w` and its re-
verse w` . . . w1, although this can be addressed by assuming that each
sentence starts with a special token.

Another natural choice for representing bigrams is to use the vector
difference, i.e. fdiff(x,y) = y−x. Clearly, however, such vectors are
not suitable for averaging, as adding up the different bigram vectors
would cancel most of the word vectors out, i.e. S2 = wn − w1.
To address this, we can apply a non-linear function such as tanh
to the vector difference, i.e. ftanh(x,y) = tanh(y − x). While this
choice does not suffer from the same limitation in theory, our ability to
recover bigrams then crucially depends on the order of magnitude of
the coordinates. To see why, note that by using the Taylor expansion
of tanh, given by tanh(x) ≈ x− x3

3
for values close to 0, we know

that the j th coordinate of S2 is approximately equal to

(x`j−x1j)−
`−1∑
i=1

1

3
(xi+1
j −x

i
j)

3

If the coefficients of the word vectors are sufficiently small, S2 will
thus still be dominated by w` − w1. To obtain a better bigram en-
coding, we can define f as fλ(w,w′) = tanh(λ(w′ − w)) for λ
a sufficiently large constant. In the limit λ → +∞, this leads to
f∞(w,w′) = sgn(w′ −w).

We will go one step further and combine the use of tanh with a
learned linear transformation, i.e., we will use representations of the
following form:

fT (w,w
′) := tanh(T(w′ −w) + b)

where we learn the matrix T and bias b in an unsupervised way
from a given text corpus. Intuitively, we want to select T and b
such that cos(S2, fT (w,w

′)) is higher for bigrams (w,w′) that occur
in S than for other bigrams. To implement this, for each sentence
S in our given text corpus S we randomly pick a positive bigram
example from B(S) and a negative bigram example from (U(S)×
U(S)) \B(S). Let us write posS and negS for the resulting bigram
vectors obtained by applying fT . Our objective is then to enforce that
cos(S2, posS) is greater than cos(S2, negS) by some margin γ > 0.
In particular, we learn T and b by minimizing the max-margin loss
max(cos(S2, negS) + γ − cos(S2, posS), 0) for each sentence S in
the text corpus S.

3.3 Properties of Bigram Representations
Next, we study the properties of the aforementioned bigram encodings.
As our main result, we show that the proposed encoding using fT
makes it easier to recover bigrams from a bigram vector average, and
we provide some analysis to explain why that is the case.

Experimental Setting To empirically analyze the properties of the
different bigram encodings, we use the pre-trained 300-dimensional
fastText word vectors [5], with a vocabulary of two million words.
These word vectors were trained on Common Crawl with 600 billion
tokens [19]. The sentences that we used for training, validation and
testing were obtained from an English Wikipedia dump. All sentences
used in the evaluation consist of up to 25 words6 that have correspond-
ing fastText word vectors. The training, validation and test set consist

6 This choice is based on the consideration that the average and median length
of the sentences in the Wikipedia corpus are 25 and 23, respectively.

−1.0 −0.5 0.0 0.5 1.0
cos(bi(w,w′), biS)

0

10000

20000

30000

40000

#
se

nt
en

ce
s

(w,w′) ∈ B(S)

(w,w′) /∈ B(S)

(a) f�(w,w′)
−1.0 −0.5 0.0 0.5 1.0

cos(bi(w,w′), biS)

0

5000

10000

15000

20000

#
se

nt
en

ce
s

(w,w′) ∈ B(S)

(w,w′) /∈ B(S)

(b) f1(w,w′)
−1.0 −0.5 0.0 0.5 1.0

cos(bi(w,w′), biS)

0

5000

10000

15000

20000

#
se

nt
en

ce
s

(w,w′) ∈ B(S)

(w,w′) /∈ B(S)

(c) f10(w,w′)
−1.0 −0.5 0.0 0.5 1.0

cos(bi(w,w′), biS)

0

5000

10000

15000

20000

#
se

nt
en

ce
s

(w,w′) ∈ B(S)

(w,w′) /∈ B(S)

(d) f∞(w,w′)

−1.0 −0.5 0.0 0.5 1.0
cos(bi(w,w′), biS)

0

5000

10000

15000

20000

#
se

nt
en

ce
s

(w,w′) ∈ B(S)

(w,w′) /∈ B(S)

(e) fT (w,w′)
−1.0 −0.5 0.0 0.5 1.0

cos(bi(w,w′), bi(w,w′))

0

20000

40000

#
pa

ir
s

of
bi

gr
am

s

w − w′
fT (w,w′)

(f) (w,w′) are random word pairs
−1.0 −0.5 0.0 0.5 1.0

cos(bi(w,w′), bi(w,w′))

0

20000

40000

#
pa

ir
s

of
bi

gr
am

s

w − w′
fT (w,w′)

(g) (w,w′) are bigrams
−1.0 −0.5 0.0 0.5 1.0

cos(bi(w,w′), bi(w,w′))

0

20000

40000

#
pa

ir
s

of
bi

gr
am

s

w − w′
f∞(w,w′)

(h) Effect of f∞ on pairs of bigrams

Figure 1. (a)–(e) Histograms of the cosine similarity cos(f(w,w′),S2) between a sentence and word pair. (f)–(h) Histograms of the cosine similarity
cos(f(w1, w2), f(w3, w4)) between bigrams. (Best viewed in color.)

of 1,000,000, 10,000 and 10,000 sentences, respectively.7 As an in-
trinsic evaluation of the bigram vectors, we consider the following
problem: given the average S2 of all bigrams from a given sentence
S and a bigram vector f(w,w′), decide whether that vector encodes
a bigram which occurs in the sentence or not. The importance of this
evaluation task stems from the fact that it is clearly a prerequisite to
reconstructing the given sentence, while being independent of any
particular sentence reconstruction method.

Results To compare the behavior of the different bigram encoding
strategies, Figure 1 shows the histograms of the cosine similarity
cos(f(w,w′),S2) for both positive examples, i.e. pairs (w,w′) from
S, and negative examples. Figure 1a reveals a clear weakness of �
as a bigram encoding strategy, as the histograms for positive and
negative examples are nearly identical in this case. This means that
the similarity between f(w,w′) and S2 has very limited predictive
value for deciding whether or not (w,w′) ∈ B(S). A similar issue
can be observed in Figure 1b, which is due to the fact that the bigram
vectors are approximately canceled out when using tanh(w′ −w),
as explained above in Section 3.2. As Figure 1c reveals, multiplying
the coefficients with a sufficiently large constant alleviates this issue.
In the limit, when using the sign function, the differences between the
histograms become even clearer, as can be seen in Figure 1d. Finally,
Figure 1e shows that fT also leads to clearly separated histograms.

To analyze the differences between the bigram encoding strate-
gies quantitatively, in Table 1 we report the reconstruction accu-
racy, which is here defined as the percentage of sentences for which
min(w,w′)∈B(S) cos(f(w,w

′),S2) > cos(f(u,u′),S2) where u
and u′ are randomly chosen words from U(S) such that (u, u′) /∈
B(S). In other words, we measure how often all of the bigram vectors
f(w,w′) are more similar to S2 than the vector representation of a
randomly sampled non-bigram word pair. The results are in accor-
dance with our observations from the histograms, with f� and f1
performing poorly (achieving a reconstruction accuracy of only 5%
and 12% respectively). Furthermore, we can see that fT achieves the
best results overall.
7 The model and the training procedure for bigram encoding fT is imple-

mented using the PyTorch Python library [23].

Table 1. Summary of the performance of different bigram. The accuracy
measures how often a bigram in a sentence is closer to the sentence than all

other word pairs that are not bigrams in the sentence.

Bigram encoding Acc.

f�(w,w′) = wT � w′ 5%
f1(w,w′) = tanh(w′ − w) 12%
f10(w,w′) = tanh(10 · (w′ − w)) 31%
f∞(w,w′) = sgn(w′ − w) 42%
fT (w,w′) = tanh(T(w′−w) + b) 46%

Analysis An interesting question is why the bigram vectors ob-
tained with fT lead to a better recovery accuracy than the other
encodings in Figure 1. To analyze this, let b1, ...,bn−1 be the vector
representations of the bigrams in B(S). Let i ∈ {1, ..., n − 1} and
let b∗ be the vector representation of a bigram which is not in B(S).
Assume for simplicity that the norm ‖b‖ of all bigram vectors is
approximately equal to some constant η. Then we have

cos(bi,S
2) ∝ η2 +

∑
j 6=i bi · bj

cos(b∗,S
2) ∝ b∗ · bi +

∑
j 6=i b∗ · bj

If all bigram vectors are more or less uniformly distributed, we can ex-
pect the variance of the dot products bi ·bj and b∗ ·bj to be relatively
low, and in particular we can expect

∑
j 6=i bi · bj ≈

∑
j 6=i b∗ · bj.

Since b∗ · bi < η2 if b∗ 6= bi, we can thus expect cos(bi,S
2) >

cos(b∗,S
2).

This implies that suitable bigram vectors should (i) have approxi-
mately the same norm and (ii) be distributed as uniformly as possible.
The former condition is satisfied because of our use of tanh, which
means that most coordinates will be close to -1 or 1, and thus that
the norm of the bigram vectors will be close to square root of their
number of dimensions. To investigate the second condition, in Fig-
ures 1f and 1g we compare the histograms of the cosine similarities
between the vector encodings of randomly chosen bigrams (w1, w2)
and (w3, w4), when using fT and when using fdiff. The results in
Figure 1f are for pairs of randomly chosen unigrams, while those in
1g are for actual bigrams from the Wikipedia corpus we used in our
experiments. These figures suggest that while word vector differences

Algorithm 1: Sentence reconstruction

Input :Sentence vector S = S1 ⊕ · · · ⊕ Sn,
Word vector matrix W,
n-gram encodings fn.

Output :A set of candidate sentences S

1 V1 ← V
2 M1 ← RECONSTRUCT(S1,W)
3 for k ← 2 to n do
4 Vk ← VOCAB(Mk−1)

5 Wk ← GETMATRIX(fk,W, Vk)

6 Mk ← RECONSTRUCT(Sk,Wk)

7 S ← CANDIDATESENTENCES(Mn)
8 return S

are distributed more or less uniformly for random word pairs, they
follow a very different distribution for actual bigrams. In the case
of fT , on the other hand, in both cases the bigram vectors are more
or less uniformly distributed. Figure 1h shows the result for f∞ (for
the bigrams from Wikipedia), showing that f∞ behaves similarly to
the word vector differences in this respect. These results suggest that
the improved reconstruction accuracy of the fT encodings comes
from the fact that the resulting bigram vectors are distributed more
uniformly.

4 Sentence Reconstruction
The aim of this section is to compare our sentence vectors of the form
S1⊕S2⊕S3 with those that are learned by LSTM autoencoders, on
the task of sentence reconstruction. In other words, we evaluate both
representations in terms of how well they capture the words from the
given sentence, and the order in which these words appear. Before we
present the empirical evaluation, we first address the question of how
we can reconstruct the sentence S from its embedding S1⊕S2⊕S3.
In Section 4.1, we review the compressed sensing strategy that was
used by [2] to recover the set of unigrams from the vector S1. How-
ever, the success of this strategy crucially depends on the number of
candidate words, which means in particular that it cannot directly be
used to recover bigrams and trigrams. In Section 4.2 we discuss a
solution to this issue, and explain our overall sentence reconstruction
strategy. Finally, in Section 4.3, we present the empirical comparison
with LSTM autoencoders. We find that our method compares favor-
ably to LSTMs, showing that the process of averaging n-gram vectors
is indeed sufficient, and in fact surprisingly effective, for constructing
order-encoding sentence vectors.

4.1 Unigram Reconstruction
In the following, d denotes the dimension of the word vectors and
V the vocabulary. Let W be a d × |V | matrix having word vectors
as its columns and let ew be the one-hot vector representation of
word w with respect to W, i.e., w = Wew. Then, given a sentence
S = w1w2 . . . w` its unigram vector representation S can be written
as S =

∑`
i=1 wi =

∑`
i=1 W · ewi = W · (

∑`
i=1 ewi).

The equation S = W · (
∑`
i=1 ewi) lets us interpret the problem of

reconstructing unigrams from S as a compressed sensing [6, 11] prob-
lem. The goal of compressed sensing is to recover a high-dimensional
signal (which is supposed to be sparse) from few linear measurements.
In our case, S is the measurement, W the measurement matrix, and∑`
i=1 ewi is the signal. Two methods are commonly used to tackle

this compressed sensing problem. The first one is called basis pursuit
(BP) [7], which tries to solve the equation subject to the L1-norm of
the signal and orthogonal matching pursuit (OMP) [17], which uses
a greedy approach to choose a basis vector, which is in our case the
one-hot vector, at each iteration.

4.2 Sentence Reconstruction
To reconstruct n-grams from the n-gram based average Sn =∑`−n+1

i=1 f(wi, . . . ,wi+n−1) of a sentence S with length `, where
f is an n-gram encoding function, we can again use compressed
sensing. The idea here is to replace the word vector matrix W with a
matrix Wn that consists of unique column vectors f(wi1 , . . . , win)
with (wi1 , . . . , win) ∈ V n. In this way, there is a one-to-one cor-
respondence between the column vectors of Wn and the n-grams
from V n. We note that the size of V n grows exponentially with n.
Because the reconstruction performance decreases with an increasing
number of candidate n-grams, we need prior information that can
reduce the number of candidates for successfully recovering n-grams.
For this reason, a single n-gram based sentence encoding Sn is rarely
useful for reconstructing the original sentence: if n is small then there
are usually many possibilities to form a sentence from the n-grams,
and if n is large, then there are too many candidate n-grams, which
decreases the performance of compressed sensing. To overcome this,
we will rely on a concatenation of n-gram encodings S1, . . . ,Sn and
reconstruct Sk from Sk−1 in an iterative manner. This strategy is
summarized in Algorithm 1.

The algorithm first reconstructs a bag (i.e. multiset)M1 of unigrams
from vector S1 by means of compressed sensing, where we restrict
the measurement matrix to word vectors appearing in vocabulary V1.
This step is repeated with k-gram encodings Sk for k = 2, . . . , n−1.
To this end, the algorithm first generates a vocabulary Vk consisting
of all k-grams that can be constructed by combining two compatible
(k−1)-grams from the bagMk−1. For example, the k-gram a1, ..., ak
would be included iffMk−1 contains both a1, ..., ak−1 and a2, ..., ak.
Subsequently, a measurement matrix Wk is constructed, consisting
of the vector encodings f(a1, ...,ak) of all the k-grams a1, ..., ak
from Vk. Finally, once the bag of n-grams Mn has been found, the
algorithm generates a set of candidate sentences that can be formed
from the n-grams in Mn and returns the result as its output. Note that
the output is not always a singleton set, because there is sometimes
more than one possibility to form a sentence from the given n-grams.

We apply this strategy in particular to S1 ⊕ S2 ⊕ S3, where fT
is used to construct S2 and f� is used to construct S3. Note that
by encoding trigrams using f�, the ordering of the words within a
trigram is not captured. However, since the candidate trigrams in V3

are ordered, we can still recover ordered trigrams from S3.

4.3 Empirical Comparison of Sentence
Reconstruction Methods

We consider the task of sentence reconstruction, where we compare
the method from Algorithm 1 with LSTM autoencoders.

Experimental setting Based on the training setting mentioned
in Section 3.3, we consider as sentence encoding a concatenation
of unigram, bigram and trigram encodings, i.e, S = S1 ⊕ S2 ⊕
S3. For comparison purposes, in addition to our proposed bigram
encoding fT , we will also show results for bigram encodings of
the form f�. To allow the latter strategy to recover the sentence,
we prepend and append to each sentence a start and an end token,

102 103 104 105 106

0

0.2

0.4

0.6

0.8

1

#sentences in the training set

B
L

E
U

Sc
or

e

fT

f�
LSTM

(a) Corpus-level BLEU score

0 5 10 15 20 25

0

1

2

3

4

·10−3

max n-gram

B
L

E
U
f
T
−

B
L

E
U
f
�

(b) BLEUfT − BLEUf�

Figure 2. (a) BLEU score of the reconstructed test sentences. (b) BLEU score difference between
fT and f� with varying maximal length of n-grams considered in the BLEU score.

fT f�
0

200

400

600

(a) S2

fT f�
0

50

100

(b) S3

Figure 3. Number of candidate sentences
reconstructed from S2 and S3.

respectively. Algorithm 1 is applied to reconstruct the sentence S
from these vector representations. For reconstructing n-grams, we use
BP for unigrams and OMP8 for bi- and trigrams.

We compare the performance of our approach with an LSTM [13]
autoencoder architecture with single-layer encoder and decoder. The
LSTM encoder reads the input sequence and encodes it as a concatena-
tion of the last hidden and cell states. This state vector is then passed
to the decoder, which is trained with a teacher forcing policy. We
used a standard implementation of this LSTM autoencoder, which is
part of the Keras deep learning library [8]. For inference, this model
encodes the input sequence as a state vector, and passes it alongside
the special start token to a softmax layer for predicting the next word.
This action is performed iteratively until the end token is predicted,
or the maximium sentence length is reached. The RMSprop optimizer
is used with a learning rate of 0.001 with no decay for a maximum of
50 epochs, and an early stopping strategy based on accuracy on the
development set.

Evaluation metrics Our first evaluation metric is simply the per-
centage of perfectly reconstructed sentences. In order to take into
account the magnitude of the error in cases where the reconstruction
is not perfect, we also evaluate the reconstruction performance with
the BLEU score [22], which is commonly used in the area of machine
translation. For our experiments we use the corpus_bleu module
from the NLTK python library [4]. By default, the BLEU score con-
siders n-grams from n = 1 up to n = 4, but we will also show results
for BLEU scores that consider n-grams with other ranges.

Results Table 2 shows the percentage of sentences which were
perfectly reconstructed by each model. Interestingly, both averaging
based approaches perform surprisingly well, our proposed fT encod-
ing leading to the best results (97.9%). The computationally much
more expensive LSTM autoencoder could not reconstruct any of the
sentences in the test set perfectly. The table also shows the percentage
of sentences for which the sets of unigrams, bigrams and trigrams
were correctly recovered. Note that when the unigrams cannot be
correctly recovered, then the bigrams cannot be recovered either. It
is thus interesting to see that with fT the accuracy for bigrams is ap-
proximately the same as the accuracy for unigrams. In contrast, when
using f� some additional errors are introduced at the bigram recovery

8 For BP we re-implemented the implementation in https://github.
com/NLPrinceton/sparse_recovery using the CuPy Python
libary [20]. For OMP we use the OrthogonalMatchingPursuit module
in the Scikit-learn Python library [24].

step.9 Finally, recovering trigrams is clearly harder than recovering
bigrams and unigrams.

Table 2. The percentage of correctly reconstructed sentences
(resp. n-grams) from the test set. For fT the bigrams are ordered, whereas the

bigrams for f� are unordered.

Sentence Tri Bi Uni

fT 97.9 97.9 99.8 99.8
f� 96.2 97.4 97.7 99.8
LSTM 0.0 N/A N/A N/A

The evaluation in terms of the standard BLEU score is presented
in Figure 2a, where the size of training data is considered as a pa-
rameter. As can be seen, the averaging based methods perform well
independent of the training data size, whereas the performance of the
LSTM autoencoder increases with more data, which, however, does
not even go over BLEU score 0.4. The difference between f� and
fT is small, but as shown in Figure 2b, fT consistently achieves the
best score, when the maximal length of n-grams considered for the
BLEU score is varied from 1 to 25. One of the main reasons why fT
outperforms f� is because fT captures the ordering of the two words
within a bigram, which is not the case for f�. The set of unordered
bigrams that is recovered when f� is used thus leaves more flexibility
when reconstructing the sentence, which means that the resulting set
of candidate sentences is larger. This is shown in Figure 3a. After the
trigrams have been recovered as well, some of this ambiguity is elim-
inated. However, as shown in Figure 3b, the number of compatible
sentences remains larger on average for the case where bigrams are
encoded using f�.

5 LSTM Encoding
In this section, we show that LSTM based architectures are able to
construct sentence vectors of the form S1⊕S2⊕S3. This generalizes
a result from [2], where it was shown that LSTMs can construct
unigram averages. We will assume that bigrams are encoded using
fT , as this choice leads to the best overall results in the empirical
evaluation in Section 4.3. However, it is straightforward to adapt the
proposed encoding to the other choices we considered for f , with the

9 Note that while f� captures unordered bigrams, this does not turn out to
be a major limitation, as in most cases we can recover the ordering because
of the introduction of the start and end tokens as well as the help of the
reconstructed unordered trigrams.

exception of f∞. We consider an LSTM architecture which processes
the sentence from left to right. At each position i in the sentence, we
consider LSTM units of the following form:

fi = φf (Wfwi +Ufhi−1 + bf)

pi = φp(Wpwi +Uphi−1 + bp)

oi = φo(Wowi +Uohi−1 + bo)

ci = (fi � ci−1) + (pi � φc(Wcwi +Uchi−1 + bc))

hi = oi � φh(ci)

where wi is the vector representation of the word at position i, as
before. Let us introduce the following abbreviations:

bi = fT (wi−1,wi) auni
i =

i∑
l=0

wl

t2i = f�(wi,wi−1) abi
i =

i∑
l=1

fT (wl−1,wl)

t3i = f�(wi−2,wi−1,wi) atri
i =

i∑
l=2

f�(wl−2,wl−1,wl)

with w0 an arbitrary but fixed start token. The following result shows
that we can choose the parameters of the LSTM unit such that at
each position i it outputs a vector encoding the part of the sentence
to the left of i, along with some other vectors which are needed for
bookkeeping.

Theorem 1. We can choose the parameters of the LSTM unit such
that

hi = wi ⊕ bi ⊕ t2i ⊕ t3i ⊕ auni
i−1 ⊕ abi

i−1 ⊕ atri
i−1

Proof. We will choose the parameters of the LSTM unit such that at
position i it holds that:

ci = wi ⊕ bi ⊕wi−1 ⊕ t2i−1 ⊕ auni
i−1 ⊕ abi

i−1 ⊕ atri
i−1

and
hi = wi ⊕ bi ⊕ t2i ⊕ t3i ⊕ auni

i−1 ⊕ abi
i−1 ⊕ atri

i−1
′

where the error terms in these approximations can be made arbitrarily
small.

1. We choose φf as the linear activation function, and choose the
parameters Wf , Uf and bf such that:

fi = 04d ⊕ 13d

where we write 0n for the n-dimensional vector containing a 0 at
every position, and 1n for the n-dimensional vector containing a 1
at every position. Furthermore, we write d for the dimension of the
considered word vectors.

2. We choose φp = tanh and choose Wp, Up and bp such that:

pi =
1

2
· (1d ⊕ bi ⊕ 15d)

The reason why we have to multiply the coordinates by 1
2

is because
the tanh activation function cannot output 1 (although it can output
a value which is arbitrarily close to it).

3. We also choose the linear activation for φc and choose Wc, Uc

and bc such that Wcwi +Uchi−1 + bc is given by

2 · (wi ⊕ 1d ⊕wi−1 ⊕ t2i−1 ⊕wi−1 ⊕ bi−1 ⊕ t3i−1)

Note that we multiply all the coordinates by 2 here to offset the
fact that we had to halve the coordinates of pi.

4. We choose a linear activation for φo and choose the parameters
Wo, Uo and bo such that

oi = 12d ⊕wi ⊕wi ⊕ 13d

5. Finally, we choose a linear activation for φh. For the initialization
we define:

b0 = 0d, t20 = 0d, t30 = 0d

and set the initial values for c0 and h0:

c0 := 07d, h0 := w0 ⊕ 06d.

Then, one can verify that the parameters can be chosen in these ways,
and that these choices lead to the desired behavior.

6 Conclusions and Future Work
Our motivation in this paper was to elucidate why the relatively simple
manipulation of word vectors which is done by e.g. LSTM encoders is
sufficient for learning sentence vectors from which the exact sentence
can be recovered. To this end, we have provided an analysis of how
word ordering can be captured in averaging based sentence embed-
dings. Specifically, we considered sentence representations which
consist of the concatenation of the usual unigram average with bigram
and trigram vector averages. To encode bigrams, we rely on a learned
transformation of the word vector difference, which we found to sub-
stantially outperform common alternatives on a bigram reconstruction
task. We then showed that the considered sentence representations
compare favorably to LSTM-based sentence autoencoders on the
challenging task of reconstructing a given sentence from its vector
encoding. While the exact strategy used by LSTMs in practice may be
different, the fact that order-encoding embeddings can be obtained by
simple averaging shows why we can indeed expect LSTMs to capture
word order, in tasks where this is important.

In terms of future work, the main unanswered question is how sen-
tence embeddings based on unigram averaging can be enriched in a
way that is useful for downstream applications. The simple strategy of
concatenating bigram and trigram averages, which we studied in this
paper, does not on its own lead to clear improvements in downstream
tasks such as measuring sentence similarity, as was already shown
in [2]. However, we believe that the bigram encoding strategy that we
introduced in this paper would be useful as a building block for gen-
erating semantically richer sentence embeddings. In particular, if the
aim is to learn semantically meaningful sentence embeddings, rather
than order-encoding ones, we believe three changes are needed. First,
our bigram encoding network now only considers the task of bigram
reconstruction for learning bigram vectors. This could be improved
by including a component in the loss function that encourages bigram
vectors to be predictive of the next sentence, for instance. Second,
clearly not all bigrams add relevant semantic information, which sug-
gests that a weighted averaging strategy could lead to semantically
more informative sentence vectors. Finally, in addition to bigrams
(and longer n-grams), it may sometimes be more useful to include
embeddings of skip-grams, i.e. pairs of non-consecutive words from
the sentence. To learn suitable weighted averages of such skipgram
vectors, we could again rely on the intuition that sentence vectors
should be predictive of adjacent sentences. Interestingly, this strategy
of learning weighted skip-gram averages bears a striking resemblance
to the popular transformer architecture, which will also be explored
in future work.

Acknowledgement This work has been supported by ERC Starting
Grant 637277.

REFERENCES

[1] Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, and Yoav
Goldberg, ‘Fine-grained analysis of sentence embeddings using auxiliary
prediction tasks’, (2017).

[2] Sanjeev Arora, Mikhail Khodak, Nikunj Saunshi, and Kiran Vodrahalli,
‘A compressed sensing view of unsupervised text embeddings, bag-of-n-
grams, and LSTMs’, in Proceedings of the 6th International Conference
on Learning Representations, (2018).

[3] Sanjeev Arora, Yingyu Liang, and Tengyu Ma, ‘A simple but tough-to-
beat baseline for sentence embeddings’, in Proceedings of the Interna-
tional Conference on Learning Representations, (2017).

[4] Steven Bird, Ewan Klein, and Edward Loper, Natural Language Pro-
cessing with Python: Analyzing Text with the Natural Language Toolkit,
O’Reilly Media, Beijing ; Cambridge Mass., 1 edition edn., July 2009.

[5] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov,
‘Enriching word vectors with subword information’, Transactions of the
Association for Computational Linguistics, 5, (2017).

[6] E. J. Candes and T. Tao, ‘Decoding by linear programming’, IEEE
Transactions on Information Theory, 51(12), 4203–4215, (December
2005).

[7] Shaobing Chen and D. Donoho, ‘Basis pursuit’, in Proceedings of 1994
28th Asilomar Conference on Signals, Systems and Computers, volume 1,
pp. 41–44 vol.1, (October 1994).

[8] François Chollet et al. Keras. https://keras.io, 2015.
[9] Alexis Conneau, Germán Kruszewski, Guillaume Lample, Loı̈c Barrault,

and Marco Baroni, ‘What you can cram into a single vector: Probing
sentence embeddings for linguistic properties’, in Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 2126–2136. Association for Computational
Linguistics, (2018).

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova,
‘BERT: Pre-training of deep bidirectional transformers for language
understanding’, in Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers),
pp. 4171–4186, Minneapolis, Minnesota, (June 2019). Association for
Computational Linguistics.

[11] Simon Foucart and Holger Rauhut, A Mathematical Introduction to
Compressive Sensing, Applied and Numerical Harmonic Analysis,
Birkhäuser Basel, 2013.

[12] Felix Hill, Kyunghyun Cho, and Anna Korhonen, ‘Learning distributed
representations of sentences from unlabelled data’, in Proceeding of the
2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 1367–
1377, (2016).

[13] Sepp Hochreiter and Jürgen Schmidhuber, ‘Long short-term memory’,
Neural computation, 9(8), 1735–1780, (1997).

[14] Tom Kenter, Alexey Borisov, and Maarten de Rijke, ‘Siamese CBOW:
optimizing word embeddings for sentence representations’, in Proceed-
ings of the 54th Annual Meeting of the Association for Computational
Linguistics, (2016).

[15] Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel,
Raquel Urtasun, Antonio Torralba, and Sanja Fidler, ‘Skip-thought
vectors’, in Advances in neural information processing systems, pp.
3294–3302, (2015).

[16] Lajanugen Logeswaran and Honglak Lee, ‘An efficient framework for
learning sentence representations’, in International Conference on Learn-
ing Representations, (2018).

[17] S.G. Mallat and Zhifeng Zhang, ‘Matching pursuits with time-frequency
dictionaries’, IEEE Transactions on Signal Processing, 41(12), 3397–
3415, (December 1993).

[18] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean, ‘Efficient
estimation of word representations in vector space’, in Proceedings of
the International Conference on Learning Representations, (2013).

[19] Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch,
and Armand Joulin, ‘Advances in pre-training distributed word represen-
tations’, in Proceedings of the International Conference on Language
Resources and Evaluation (LREC 2018), (2018).

[20] Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei Hido, and Criss-
man Loomis, ‘Cupy: A numpy-compatible library for nvidia gpu cal-
culations’, in Proceedings of Workshop on Machine Learning Systems
(LearningSys) in The Thirty-first Annual Conference on Neural Informa-
tion Processing Systems (NIPS), (2017).

[21] Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi, ‘Unsupervised
learning of sentence embeddings using compositional n-gram features’,
in Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, pp. 528–540, (2018).

[22] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu, ‘BLEU:
a method for automatic evaluation of machine translation’, in Proceed-
ings of the 40th Annual Meeting on Association for Computational
Linguistics - ACL ’02, p. 311, Philadelphia, Pennsylvania, (2001). Asso-
ciation for Computational Linguistics.

[23] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and
Adam Lerer, ‘Automatic differentiation in PyTorch’, in NIPS Autodiff
Workshop, (2017).

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, ‘Scikit-learn: Machine learning in Python’, Journal of Machine
Learning Research, 12, 2825–2830, (2011).

[25] Nils Reimers and Iryna Gurevych, ‘Sentence-BERT: Sentence embed-
dings using Siamese BERT-networks’, in Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pp. 3973–3983, Hong Kong, China, (November
2019). Association for Computational Linguistics.

[26] Andreas Rücklé, Steffen Eger, Maxime Peyrard, and Iryna Gurevych,
‘Concatenated p-mean word embeddings as universal cross-lingual sen-
tence representations’, CoRR, abs/1803.01400, (2018).

[27] Joseph Sanu, Mingbin Xu, Hui Jiang, and Quan Liu, ‘Word Embeddings
based on Fixed-Size Ordinally Forgetting Encoding’, in Proceedings
of the 2017 Conference on Empirical Methods in Natural Language
Processing, pp. 310–315, Copenhagen, Denmark, (2017). Association
for Computational Linguistics.

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin, ‘Attention
is all you need’, in Advances in neural information processing systems,
pp. 5998–6008, (2017).

[29] John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu, ‘To-
wards universal paraphrastic sentence embeddings’, in Proceedings of
the International Conference on Learning Representations, (2016).

[30] Shiliang Zhang, Hui Jiang, Mingbin Xu, Junfeng Hou, and Lirong Dai,
‘The fixed-size ordinally-forgetting encoding method for neural network
language models’, in Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 2: Short
Papers), volume 2, pp. 495–500, (2015).

