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Abstract

Recently a number of unsupervised approaches
have been proposed for learning vectors that cap-
ture the relationship between two words. Inspired
by word embedding models, these approaches rely
on co-occurrence statistics that are obtained from
sentences in which the two target words appear.
However, the number of such sentences is often
quite small, and most of the words that occur in
them are not relevant for characterizing the con-
sidered relationship. As a result, standard co-
occurrence statistics typically lead to noisy rela-
tion vectors. To address this issue, we propose
a latent variable model that aims to explicitly de-
termine what words from the given sentences best
characterize the relationship between the two tar-
get words. Relation vectors then correspond to the
parameters of a simple unigram language model
which is estimated from these words.

1 Introduction

Word embedding models, which learn vector representations
of word meaning based on co-occurrence statistics, are now
well-established [Mikolov et al., 2013; Bojanowski er al.,
2017]. Recently, inspired by the success of these approaches,
a number of methods have been proposed for learning vec-
tor representations of relations between words [Washio and
Kato, 2018a; Jameel et al., 2018; Espinosa-Anke and Schock-
aert, 2018; Washio and Kato, 2018b; Joshi et al., 2019]. This
idea of encoding relations as vectors stands in stark contrast
with the traditional treatment of relations in Natural Lan-
guage Processing (NLP), where the focus has mostly been
on well-defined, discrete relation types.

The use of vector representations means that we can, in
principle, capture aspects of meaning which go beyond what
can be expressed using discrete representations, such as de-
grees of lexical entailment [Vuli¢ et al., 2017] or relational
similarity [Jurgens et al., 2012]. Relation vectors can also
capture relation types that are not usually included in knowl-
edge graphs. Consider, for instance, the relation between dog
and garden. While intuitively clear (e.g. the fact that dogs en-
joy spending time in the garden), such relations are missing
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from traditional knowledge bases. In contrast, consider the
following sentences from Wikipedia':

... pretty little dog that led her to a lovely garden. (D
... his dog, Bendico, joyfully dig up the garden, ... 2)
... for the dog, who carried it into the garden to eat.  (3)

While such sentences do not explicitly assert the relationship
between dog and garden, it can to a large extent be character-
ized based on the words that occur in them. For instance, to
this end, the method used in Espinosa-Anke and Schockaert
[2018] simply averages the pre-trained word vectors of the
words that occur between dog and garden (while averages of
the words occurring before dog and of the words occurring
after garden are also used as additional context). Intuitively,
however, simply averaging word vectors from sentences such
as (1)—(3) might not be ideal, as only some words are relevant
(i.e. the ones shown in bold). One possibility is to take into
account how strongly each of the context words from these
sentences is related to the considered word pair. For instance,
Jameel et al. [2018] used generalizations of point-wise mu-
tual information (PMI) to three arguments for this purpose.
One difficulty with this strategy is that such statistics have to
be computed from very limited amounts of information (e.g.
a word such as joyfully may only occur once, even though
it is clearly relevant). Furthermore, the most relevant words
are often common words such as prepositions, which are less
likely to be identified using PMI-like statistics.

To address these concerns, in this paper we introduce REL-
ATIVE (RELations as LATent dIscourse VEctors), a new
method for learning relation vectors based on the following
intuition. Given a word pair (a,b) and a context word w,
we can distinguish four possibilities: (i) w relates to the re-
lation between a and b; (ii) w only relates to a; (iii) w only
relates to b; (iv) w is neither related to a nor to b. Our method
uses a simple unigram language model to estimate the prob-
ability of each of these four cases, for every word w that
occurs in a sentence mentioning both a and b. Similarly to
the aforementioned PMI-based weighting strategies, this ap-
proach then naturally leads us to compute relation vectors as a
weighted average of word vectors. We empirically show that
our relation vectors outperform those from existing methods.

'https://en.wikipedia.org/wiki/The_Story_of_the_Queen_of _
the_Flowery _Isles, https://en.wikipedia.org/wiki/The_Leopard,
https://en.wikipedia.org/wiki/Lump_(dog)
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2 Related Work

The problem of relation extraction has already been widely
studied in NLP, but the focus has traditionally been on ex-
tracting instances of a given well-defined relation (e.g. is-
a, part-of, has-capital), for instance by hand-crafting lin-
guistic patterns that are indicative of the considered relation
[Hearst, 1992] or by learning such patterns from a set of
seed examples [Agichtein and Gravano, 2000]. Some ap-
proaches have also been proposed which are not restricted
to a pre-defined set of relation types. The NELL system
[Carlson et al., 2010] is perhaps the best-known example
of this kind. While it starts off with a set of seed exam-
ples, it then aims to automatically extend the set of consid-
ered relation types with only minimal amounts of human su-
pervision. Fully unsupervised approaches to relation extrac-
tion have also been proposed [Shinyama and Sekine, 2006;
Banko et al., 2007]. These methods essentially focus on iden-
tifying clusters of linguistic patterns that tend to link the same
word pairs, and are therefore assumed to correspond to a se-
mantically coherent relationship. These methods are some-
what closer in spirit to our approach, which is also fully un-
supervised, but with the crucial difference that we use vector
representations. This, among others, means that we can easily
incorporate our representations into neural NLP architectures.

In recent years, the focus in relation extraction has shifted
to the use of neural network models [dos Santos et al., 2015;
Xu et al., 2015]. Different from our setting, such approaches
are supervised and limited to a fixed set of relation types. Per-
haps surprisingly, however, it is also possible to implement
competitive relation extraction methods which rely on vector
representations that are learned in an unsupervised way. For
instance, Hashimoto et al. [2015] predict which relations are
asserted in a given sentence by training a logistic regression
classifier on a vector representation of the sentence, where
the latter is obtained in an unsupervised way by averaging
pre-trained word vectors. Along similar lines, Jameel et al.
[2018] obtained state-of-the-art performance in a relation ex-
traction task by training an SVM classifier on relation vectors
that were obtained in an unsupervised way.

The problem of learning unsupervised relation vectors goes
back at least to Turney [2005], who proposed a method
based on singular value decomposition, starting from a ma-
trix which encodes how often different word pairs are linked
by different linguistic patterns. Along similar lines, Riedel et
al. [2013] learned vector representations of word pairs, but
they combined statistics about linguistic patterns with triples
from a knowledge graph. More recently, Jameel ef al. [2018]
proposed an unsupervised method for learning relation vec-
tors which is inspired by the GloVe word embedding model.
Their training objective is to learn vector representations rap,
of word pairs and vector representations w, of context words,
such that the dot product r,p, - W, predicts the strength of as-
sociation between occurrences of the context word ¢ and the
word pair (a,b) in a sentence. For this purpose, they con-
sidered a number of generalizations of PMI to three argu-
ments. A simpler and more efficient alternative was proposed
in Espinosa-Anke and Schockaert [2018], where relation vec-
tors were learned by averaging the word vectors of the context
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words appearing in sentences that contain the word pair (a, b)
and then using a conditional autoencoder.

The aforementioned methods have the disadvantage that
they can only learn relation vectors for pairs of words that
co-occur in the same sentence sufficiently often. To address
this, a number of methods have been proposed which learn
word vectors that are aimed at modelling relational prop-
erties [Washio and Kato, 2018a; Washio and Kato, 2018b;
Joshi er al., 2019]. Specifically, these works train a neu-
ral network that maps the concatenation of two word vectors
W, @ W), to a vector rp Which represents the relation be-
tween the two corresponding words a and b. This network
is trained such that r,p captures the contexts in which the
word pair appears, where contexts correspond to learned vec-
tor encodings of dependency paths [Washio and Kato, 2018al
or LSTM-based neural encodings of surface patterns [Washio
and Kato, 2018b; Joshi et al., 2019].

3 Model Description

Our approach is inspired by the averaging based sentence em-
bedding method from Arora er al. [2017], which essentially
views sentence vectors as latent parameters of a simple uni-
gram language model. In Section 3.1, we first briefly describe
this method. Then, in Section 3.2 we introduce our model.

Notations. For a given word w, we will write w for the

corresponding word vector from a given pre-trained word em-

bedding. We write ||w|| for its Euclidean norm, and we define
w

norm(w) = Twy for w # 0.

3.1 Latent Discourse Vectors

In Arora et al. [2016] a generative unigram language model
is studied in which the i”* word from a document is assumed
to have been sampled as

w; o exp(wj - ¢4) 4)

where c; is a latent discourse vector of unit norm. From
this generative model, a simple approach for constructing
sentence embeddings can be obtained by assuming that the
discourse vector remains constant throughout each sentence
S = w;....wy. In that case, the maximum likelihood estimate
of the sentence-specific discourse vector is given by:

k
Cs = norm <Z wi> (®)]
i=1

In Arora et al. [2017] this model was improved, among oth-
ers, by using a mixture distribution of the form:

w; = aP(w;) + (1 — a)ZLS exp(wj - cg) (6)
with Zg a normalizing constant. In this case, the maximum
likelihood estimate of cg corresponds to a weighted average
of the word vectors, where the impact of the most common
words is reduced. The estimated discourse vector cg will
thus mostly be determined by the content words from S, and
should thus capture the meaning of the sentence more clearly.

Intuitively, the model in (6) assumes that a fraction o of
words in a typical sentence are non-informative words, which
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are drawn from the background distribution P(w;). We can
make this view explicit, which will be helpful for introducing
our relation vector model. In particular, with each word po-
sition ¢ we associate an indicator variable Z;, where Z; = 1
means that the word at that position has been drawn from the
background distribution and Z; = 0 otherwise. Let us fur-
thermore consider a random variable WW; which corresponds
to the word that has been sampled at position ¢. We now con-
sider the following generative process i € {1, ..., k}:

P(Z=1) = a %)
P(Wi=w|Zi=1) = P(w) (®)
P(Wi=w|Z;=0) o exp(w-cs) ©))

Note that P(W;=wy) is then given by (6).

3.2 Relation Vectors

Our generative process is similar in spirit to (7)—(9), but we
will consider indicator variables Z; which can take four pos-
sible values: zup, 24, 2p and z,. Intuitively, Z;=z,, means
that the word at position  is characteristic of the relationship
between a and b; Z;=z, means that the word is characteristic
of a but not of b, and vice versa for Z;=z;; finally Z;=z,
means that the word is unrelated to a and b. Crucially, while
the probability that Z;=1 is fixed for each ¢ in (7), we will
instead infer a distribution over {z,y, 24, 2, 2+ } for each Z;,
using expectation-maximization (EM).

Each of the possible values zp, 24, 25, 2« Will be associated
with a corresponding discourse vector. For efficiency, the dis-
course vectors Ca, Cp, C« Will correspond to pre-defined vec-
tors. Specifically, c, is obtained by taking an average of all
the word vectors from the vocabulary, weighted by their fre-
quency in the considered corpus. Similarly, for each word a
from the vocabulary, c, is estimated by simply averaging all
the words that appear in the context of a throughout the cor-
pus. The discourse vector c,p, on the other hand, is treated
as a latent vector whose parameters will be inferred.

In the following, we let S = {wy, ..., wy} be the bag-of-
words representation consisting of all words that occur be-
tween a and b in sentences where a appears before b in the
given corpus®. We initialise the discourse vector cay, as:

k

Capb — NOrm (Z Wi)

i=1

Using EM, we alternatingly (i) compute the posterior prob-
abilities P(Z;=z | W;=w;, ¢,) for z € {zup, 24, 2b, 2+ } and
(ii) refine our estimate of the discourse vector c,p, by maxi-
mizing expected likelihood. Specifically, the posterior can be
computed as follows:

P(Z,=z|W;=w;;c,) x P(Wi=w;|Z;=z;c,) - P(Z;=xz)
o exp(Wi - €z) * Az

In Jameel et al. [2018] and Espinosa-Anke and Schockaert
[2018], additional vectors were learned based on the words appear-
ing before a and those appearing after b. We only focus on the mid-
dle words, as this leads to a reduced overall dimensionality, which
makes the method faster and easier to use in downstream tasks.
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where Agp, Ag, A\p, Ax > 0 are hyper-parameters of our model.

To update the discourse vector c,p, first note that the expected

log-likelihood is given by:
k

log H P(Wi=w;)

i=1

Ez =Ez

k
Z log P(Wizwi)]

=1

k
:A+2Wi'cab'P(Z1i = Zab)
i=1
for some constant A and Z = (Z1, ..., Z). It can be shown
that the (normalized) discourse vector c,, Which maximizes
the latter expression is given by:

k
Cab = NOTM (Z Wi - P(Zizab)> (10)
i=1

Propagation to unseen pairs. As mentioned in Section 2,
one of the main advantages of the models of Washio and Kato
[2018b] and Joshi er al. [2019] is their ability of inferring
relation embeddings even for pairs of words that never co-
occur in the same sentence. To achieve this with our method,
we propose the following simple fallback strategy for pairs
(a, b) for which we cannot compute a relation vector directly.
We compute the 5 nearest neighbours aq, ..., as of a and the
5 nearest neighbours b1, ..., bs of b, using standard word vec-
tors. Let V' be the pairs of words for which we can construct
arelation vector directly. We then estimate the relation vector
€ap for (a,b) as:

norm( Z

1<i,j<5,(ai,b;) €V

cos (a, a;) - cos (b, b;) - Ca;p;) (11)

4 Pre-trained Relation Embeddings

To learn the relation vectors we use the English Wikipedia
dump of January 2018, as in Joshi ef al. [2019]. Prepro-
cessing of the corpus includes lowercasing and tokenization.
Multiwords (e.g. United States) are also considered follow-
ing the same approach as in Mikolov ef al. [2013]. We used
300-dimensional FastText word embeddings [Bojanowski et
al., 2017] for initialization. The number of iterations of the
EM algorithm (see Section 3.2) is set to three, which we em-
pirically found sufficient for the model to converge.

Vocabulary selection. With our method we could poten-
tially learn relation embeddings for all co-occurring word
pairs. However, this would be slow to learn and require
excessive amounts of storage, and would thus be impracti-
cal for downstream applications. Therefore we learn rela-
tion vectors for a more focused set of word pairs. As with
word embedding models, we select our core word-level vo-
cabulary based on plain frequency, in this case selecting the
top 100K most frequent words in the corpus. Then, for se-
lecting the most relevant word pairs, it is desirable to con-
sider those which co-occur often, and whose joint occurrence
probability is as high as possible, but at the same time with-
out exceedingly rewarding rare events. Thus, we sort our
pair-level vocabulary via, first, a minimum co-occurrence of
25, and second, by scoring each pair with a smoothed ver-
sion of PMI, where we exponentiate the context word term
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salamander-amphibian | tooth-chew | netherlandish-flemish
relative pair2vec vecdiff relative pair2vec vecdiff relative pair2vec vecdiff
cagayan-province  salamander-lizard  toad-amphibian claws-dig jaw-chew jaw-chew penance-reconciliation babylonian-palestinian overview-flemish

mold-piece salamander-toad frog-amphibian

filipinos-asian shearwater-seabird  lizard-amphibian tooth-grind
mindano-island amphibian-salamander snake-amphibian tooth-bite
quilt-layer mammal-amphibian  fish-amphibian tick-host

mandible-chew tooth-jawbone mandible-chew
swallow-chew molar-chew
vine-bud
tooth-lip

courier-messenger
persian-pahlavi

del pueblo-people
handbag-purse

polynesian-tahitian
tyrolean-austrian

brickwork-flemish
dacian-romanian

antwerp-flemish
dutch-flemish
hittite-anatolian
overview-walloon

tooth-gum
tooth-like

Table 1: Nearest neighbours for selected relation vectors. The main takeaway is that our proposed model provides greater abstractions,
bringing closer similar relations from different domains, unlike vector differences and (to a lesser extent) Pair2 Vec.

in the denominator to 0.5, similar as in Levy ef al. [2015a].
Finally, to ensure a balanced vocabulary, we select a maxi-
mum of 100 co-occurring words (i.e. those with the highest
smoothed-PMI scores) for each word in the vocabulary. This
process yielded a pair vocabulary of 1,138,305 relation vec-
tors of 300 dimensions. These pre-trained relation embed-
dings, along with the code to generate them, are available at
https://github.com/pedrada88/relative.

Execution Time. As far as the training time is concerned,
learning relation vectors for all pairs in the vocabulary took
around a day on a standard desktop computer on CPU.
This is considerably faster than competing systems. For in-
stance, as explained in Section 3.2, SeVeN [Espinosa-Anke
and Schockaert, 2018] is considerably slower, among oth-
ers due to the use of sentence-level vector representations.
GRYV [Jameel et al., 2018] requires solving a number of least-
squares regression problems for each word pair, in addition to
computing the ternary PMI score statistics, which also takes
more time. For Pair2Vec [Joshi er al., 2019], the original
repository indicates a duration of 7-10 days to learn the rela-
tion model from the Wikipedia corpus, on unspecified hard-
ware. This is due to the use of Bi-LSTM sentence encoding,
pre-training, and compositional representation functions cou-
pled with various types of sampling. For NLRAyo [Washio
and Kato, 2018b] no explicit information is available, but
given that their model uses a similar LSTM-based encoding
as Pair2Vec and moreover uses dependency contexts, we as-
sume the training time to be even higher than for GRV.3

Nearest Neighbours. To gain an understanding of the intrin-
sic properties of our model we provide an analysis based on
the nearest neighbours of selected relation vectors. In par-
ticular, Table 1 shows, for illustrative purposes, different se-
mantic clusters generated by RELATIVE, Pair2Vec, and Fast-
Text word vector differences (VECDIFF), the latter being the
most common approach to represent relations in the litera-
ture [Weeds er al., 2014; Vylomova et al., 2016]. We can see
that interesting relational abstractions seem to emerge in our
model, e.g., a clear hypernymic relation in the salamander-
amphibian pair. Note that the nearest neighbours in the REL-
ATIVE space, for this example, are word pairs for which a
similar relation holds, but do not belong to the animal do-
main, unlike with PAIR2VEC and VECDIFF. Similarly, the
tooth-chew pair intuitively captures the “is used for” rela-

3There are some intrinsic differences among the models which
should also be taken into consideration. In our case, as for SeVeN
and GRY, relation embeddings are the final output. In the case of
Pair2Vec and NLRAvo, a neural model is learned which can be used
to extract relation embeddings for any word pair.
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slovaks-ukrainians invasive species-natural harvey-kansas
relative init relative init relative init
western s detrimental the s county
eastern and | potentially destabilizing of in s
southern in detrimentally affected which county in
southwestern overlogging be townshippers countys
southernwestern at thereby exacerbating  and town 17-county

Table 2: Nearest neighbours (words) to selected relation vectors in
the initialized and final versions of our RELATIVE model.

tion while the netherlandish-flemish pair captures “is simi-
lar to”. To gain further understanding, in Table 2 we show
the word vectors that are most similar to our learned rela-
tion vectors, and compare them to the nearest neighbours
of the vectors used for initialization (based on plain word
vector averaging). We can clearly observe that the closest
words to our relation vectors tend to be more characteristic
of the relationship between the two words. For instance, the
neighbors for slovaks-ukranians characterize the geo-spatial
relationship, whereas the initialization vectors mostly include
frequent function words. This is clearly related to using dis-
course vectors, which penalizes words that are not strictly rel-
evant to the relation, but simply rather frequent overall.

5 Intrinsic Evaluation: Lexical Semantics

In this section we evaluate our model on standard lexical se-
mantics tasks. To this end, we use our latent variable model to
learn relation embeddings for the word pairs occurring in the
considered benchmarks, using the same experimental setting
described in Section 4. In the case of word pairs that never
occur in the same sentence in our corpus, we rely on the prop-
agation explained in Section 3.2. We report results for our
final model RELATIVE and for the plain-averaging based re-
lation vectors c,p, that we used to initialize our model (see
Section 3.2), which we will refer to as RELATIVE;y.

Comparison methods. We compare with the main rela-
tion embedding methods available in recent literature: 300-
dimension Pair2Vec* [Joshi et al., 2019] and GRV;’[Jameel
et al., 20181, 600-d NLRAvyo® [Washio and Kato, 2018b] and

“We used the pre-trained model available in https://github.com/
mandarjoshi90/pair2vec. These models were trained on the same
Wikipedia corpus used in our experiments (see Section 4).

SWe used a variant of the original method, which computes rela-
tion vectors as a weighted average of the word vectors, similar to our
method but using as weights the SI? scores from Section 4.1 of the
original paper. We found this to perform better overall, while being
faster to compute and more directly comparable with our model.

®No code available. We contacted the authors and they provided
us with the embeddings used in the SemEval task. These are not
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900-d SeVeN’ [Espinosa-Anke and Schockaert, 2018].

Word pair encoding. To represent a given word pair (a, b),
we concatenate the relation embeddings c,p and cp, to two
vectors derived from the standard word embedding of a and
b, namely the vector difference b — a and the component-
wise multiplication a ® b, where adding the latter has been
shown to improve performance in lexical semantics tasks [Vu
and Shwartz, 2018]. As word embeddings, we use the same
300-dimensional FastText embeddings that are used for the
initialization of our model (see Section 4). The simple con-
catenation of b — a and a ® b is also used as a baseline.

5.1 Lexical Entailment

We evaluate our model on graded lexical entailment using the
HyperLex dataset [Vuli¢ et al., 2017]. Instead of defining
relations as binary, in this dataset each word pair (a, b) is pro-
vided with a score measuring the degree of membership of a
to the category b, which makes this task well-suited for eval-
uating relation vectors. HyperLex contains 2,616 pairs with
two evaluation protocols. For both protocols, training and
test partitions are available. The first protocol (random split)
includes vocabulary overlap between train and test instances
while the second one (lexical) does not. We then train a linear
SVM regression model on the encoded vectors from the word
pairs of the training split, and the performance is evaluated in
the test split, in terms of the Pearson (r) and Spearman (p)
correlation values with respect to the gold standard.

Results. Table 3 summarizes the results. To interpret these
results, it is important to highlight the finding of Levy et al.
[2015b], who showed that supervised methods based on word
embeddings are prone to memorize the training set, learning
what they referred to as prototypical hypernyms. These are
words that frequently occur in the training set, which leads
the supervised model to consider them as super-classes, irre-
spective of the other word in the pair. To reliably evaluate the
performance of different models, it is thus important to use
the lexical split. We show results for the random split as well,
to analyze which methods are most prone to overfitting. In
Table 3, this effect can clearly be seen for all the baselines.
Interestingly, the performance of Pair2Vec drops to below the
word embedding baseline for the lexical split, suggesting that
this model is particularly prone to the aforementioned mem-
orization phenomenon. For the SeVeN model, a similar drop
in performance between the random and lexical split is wit-
nessed, again showing that this method overfits, although the
overall performance of that method is higher. In contrast, our
model is much more robust, obtaining by far the best perfor-
mance on the lexical split. This clearly shows that our model
is better at abstracting away from the particular words a and
b when learning relation vectors.

5.2 Relation Classification and Similarity

Given a pre-defined set of relations and a pair of words, the
relation classification task consists in selecting the relation

directly comparable with our model as they have a higher number of

dimensions (i.e. 600) and are trained on a different corpus. Never-

theless, we include their result in the SemEval task for completeness.
"Code available at https://bitbucket.org/luisespinosa/seven.
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Lexical Random

Model r p r P
RELATIVE 53.1 | 543 | 56.8 | 58.4
Relation RELATIVE;y; | 42.7 | 43.9 | 58.9 | 60.6
Emb Pair2Vec 339 13341530543
GRVg 472 | 483 | 524 | 554
SeVeN* 47.6 | 46.9 | 61.2 | 62.7

| Word Emb | FastText [ 426 [ 439 [ 522 [ 54.3 |

Table 3: Pearson () and Spearman (p) correlation performance on
the lexical and random partitions of HyperLex. Models marked with
* are not directly comparable (higher dimensionality).

that best describes the relationship between the two words.
As test sets we used DiffVec [Vylomova er al., 2016] and
BLESS [Baroni and Lenci, 2011]. The DiffVec dataset con-
tains 12,458 word pairs from a total of fifteen types of rela-
tions, e.g., hypernymy, event or cause-purpose. BLESS in-
cludes noun-noun relations such as hypernymy, meronymy,
and co-hyponymy, including 13,258 and 6,629 instances for
training and testing, respectively.® The relation classification
task is treated as a multi-class classification problem, where
the relations are encoded using word and relation embeddings
as explained at the beginning of this section. For our experi-
ments we train a linear SVM classifier directly on the vector
differences, using 10-fold cross-validation in the case of Diff-
Vec, and using the train-test splits in the case of BLESS.

Different relations may also have different degrees of pro-
totypicality. For instance, for the relation “X is higher in
the genealogical tree than Y”, the pair (son,father) should be
considered more prototypical than the pair (son,uncle), even
though both pairs might be considered to be instances of the
relation. This property is measured in the the SemEval 2012
dataset on measuring degrees of relational similarity [Jur-
gens et al., 2012]. We follow the experimental methodology
of Jameel et al. [2018], which is based on the platinum rat-
ings dataset.” In this dataset, 79 files, each one corresponding
to a different relation, are provided. Note that this relational
similarity task is about measuring the typicality of a word pair
w.r.t. a fixed relation class, rather than measuring the degree
of category membership of the first word in the pair with re-
spect to the class represented by the second word as in Hyper-
Lex [Vuli¢ ef al., 2017]. For each relation, we first split the
associated relation files into two thirds for training and one
third for evaluation. Then, as in the case of HyperLex, we
train a linear SVM regression model on the encoded vectors
of the ranked word pairs from the training split, and evaluate
its performance on the test split.

Results. The results for the relation classification and sim-
ilarity tasks are displayed in Table 4. As can be observed,
relation embeddings are clearly useful in the relation classi-

8The full version of DiffVec includes some instances and rela-
tions from BLESS and therefore the datasets exhibit overlap in a
number of relations.

°In particular, we made use of the “Phase2AnswerScaled” data
from the platinum rankings dataset, downloaded from https://sites.
google.com/site/semeval2012task2/.
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DiffVec BLESS SE-12

20News Reuters BBC Ohsumed

Model Acc | F1 Acc | F1 r

Model Acc | F1 | Acc| F1 | Acc | F1 | Acc| F1

RELATIVE 87.0 | 649 | 94.0 | 91.9 | 33.1 RELATIVE 79.0 | 78.3 [ 97.0 | 92.2 | 97.8 | 96.1 | 42.6 | 36.1
RELATIVE;y; | 86.9 | 64.0 | 93.7 | 91.6 | 33.0 RELATIVEj; | 78.8 | 78.0 | 96.6 | 89.7 | 96.5 | 94.8 | 42.8 | 36.8
Pair2Vec 86.7 [ 65.8 1 92.3 [ 89.5 32.7 Pair2Vec 75.5]749 (963 |88.4]96.3]96.2]39.8]309
Rels GRVg, 866 1 645 19291 90.6 | 332 GRVyg; 78.7]78.0[96.7|88.8[97.0]95.3(42.936.2
SeVeN* 86.7 | 649 | 93.2 | 91.1 344 SeVeN 78.5177.9196.9|90.8 |96.8|95.0|42.8|35.7
NRVAyo* - 32.7 [ FastText [785]77.7]196.8189.0]964[94.7[41.8[34.2]

[ Word | FastText 84.3 | 61.3 | 92.9 | 90.6 | 32.7

Table 4: Results using relation embeddings and/or word embed-
dings as features in relation classification (DiffVec and BLESS) and
relation prototypicality (SemEval-12).

fication tasks (DiffVec and BLESS), as in all cases they out-
perform the word embedding baseline. Our method obtains
the best results overall, although the differences are rather
small and Pair2Vec achieves the best performance on Diff-
Vec in terms of F1. What is particularly remarkable is that
a simple averaging model such as RELATIVE;,; can achieve
near-optimal results. Interestingly, the weighted averaging
approach that is taken by the GRVg; model actually performs
worse than this simple averaging strategy. In the case of re-
lational similarity (SemEval-12), the results are mixed, with
all models performing similarly to the word embedding base-
line. One of the main reasons for this behaviour seems to be
the limited amount of training data, which includes only a few
dozen examples per relation type.

6 Extrinsic Evaluation: Text Categorization

One useful way in which relation vectors can be used in
downstream applications is by enriching word vectors. To
generate the enriched representation of a given word a, we
simply concatenate its standard word vector a with the av-
erage of all relation vectors of the form c,, among our pre-
trained set of relation vectors (see Section 4). These enriched
representations (or the normal word vectors in the case of the
FastText baseline) constitute the input to a standard word-
based C-BLSTM classification model, which in the first layer
consists of a CNN, followed by a bidirectional LSTM.!? We
evaluate the quality of these enriched representations on text
categorization. Given a text and a pre-defined set of labels
(categories), the text categorization task consists of assigning
the text to its most appropriate label. We specifically used
the following standard datasets'': (1) 20news [Lang, 1995]
(including 20 fine-grained labels); (2) reuters [Lewis et
al., 2004] (we use its 8-label variant); (3) bbc!? [Greene and
Cunningham, 2006] (5 labels); and (4) ohsumed (23 labels).

The experimental results, summarized in Table 5, suggest
that incorporating relational information is indeed beneficial
for text categorization generally across the board. In partic-
ular, our proposed model RELATIVE is the only relation em-

"Model developed in Keras: https://github.com/fchollet/keras.

"Preprocessed datasets (tokenized, lowercased) were down-
loaded at https://github.com/pedrada88/preproc-textclassification
[Camacho-Collados and Pilehvar, 2018] or their official repository.

2For bbc, which does not include train-test splits, we performed
10-fold cross-validation.
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Table 5: Accuracy and Macro-F1 results in text categorization.

bedding technique that performs consistently better than the
standard FastText embeddings for all datasets and measures.
The simpler RELATIVE;y; also proves competitive, achieving
the best overall results in the challenging Ohsumed dataset
(specialized medical domain) in terms of macro-average F1.

7 Conclusions and Future Work

In this paper we have presented a new model for learning re-
lation vectors from text corpora. The relation vectors learned
from our model address two issues with respect to prior work.
First, they are much faster to compute, even compared to av-
eraging based models such as SeVeN. Second, by using a
principled way to focus on the most relevant words only, we
obtain relation vectors which are intuitively “purer”, in the
sense that they capture the relationship, without capturing the
meaning of the individual words. This aspect can be observed
in our nearest neighbours analysis and is further highlighted
in the results on the lexical split of the lexical entailment task.
As future work, there are various ways in which our model
can be further refined, such as the use of multi-prototype em-
beddings to obtain more relevant discourse vectors c, and
Cp in the case of ambiguous words, and the use of priors,
e.g. based on (11), to alleviate sparsity issues. Finally, as the
text categorization experiments show, there are straightfor-
ward ways in which relation vectors can be leveraged for stan-
dard downstream NLP tasks, which we have only begun to
explore. We are planning to use our methods in other down-
stream tasks which can benefit from the background knowl-
edge encoded in the relation embeddings, e.g. reading com-
prehension, following the line of Joshi et al. [2019].
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