
Training
➔ Obtain is-a sense-level term-hypernym pairs from Wikidata.

➔ Train a transformation matrix for each domain  such that:

➔ Apply this matrix to an unseen domain-specific term, so that the 
resulting vector constitutes the “ideal” hypernym for that term. 
Since it may not coincide with any predefined vector, retrieve its 
nearest neighbours by cosine similarity.
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Motivation
➔ The capacity for generalization lies at the core of human understanding.
➔ Lexical taxonomies are important resources on which NLP systems rely for detecting generalizations.

◆ In a taxonomy learning context, the step of hypernym discovery is crucial, and a research topic in itself.
➔ There are two main approaches to hypernym discovery: Path/pattern based, and distributional.

Resources
➔ BabelNet (Navigli and Ponzetto, 2012) - The largest 
multilingual repository of concepts and entities.

➔ SensEmbed (Iacobacci et al. 2015) - A sense-level 
real-valued vector space representation, where each 
vector corresponds to a BabelNet synset and its lexicalization.
◆ E.g. v(bass_bn:00008917n) = [0.2346, -0.756222, 0.123236 … ]

➔ KB-Unify (Delli Bovi et al. 2015) - An integration of
Open Information Extraction systems, disambiguated
using BabelNet as reference sense inventory. It contains 
triples from Patty, WiseNet, NELL and ReVerb.
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Contribution
I. Break down the training data in knowledge domains by using the 

distributional approach of NASARI (Camacho-Collados et al. 2016).
II. Train a domain-wise transformation matrix (Mikolov et al. 2013), 

and use it to discover hypernyms.
III. Improve the quality of the system by incorporating disambiguated 

triples coming from Open Information Extraction techniques.

So Long and Thanks for All the Shoes
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Conclusion

We perform experiments on hypernym discovery. Traditionally, 
systems are evaluated either on detecting a hypernymic relation in 
a pair of concepts, or in finding the best hypernym from a 
predefined and closed terminology. Providing a hypernym from 
scratch and link it to a knowledge resource is more challenging. 
Key findings:

➔ Domain clustering is essential.  This is consistent with the 
intuition of Fu et al. (2014). 

➔ In some domains, feeding OIE triples to the training data 
improves, but not always. 

P@K- Transport

Results for other seven 
domains available in 

the paper.

Train
education biology transport

MRR MAP R-P MRR MAP R-P MRR MAP R-P

5k 0.00 0.00 0.00 0.63 0.63 0.59 0.01 0.01 0.01

15k 0.22 0.22 0.21 0.84 0.72 0.79 0.25 0.23 0.21

25k 0.33 0.32 0.30 0.84 0.83 0.81 0.46 0.43 0.39

25k+KBU25k 0.38 0.36 0.33 0.70 0.63 0.56 0.48 0.45 0.41

100k Random 0.00 0.00 0.00 0.84 0.81 0.77 0.01 0.02 0.02

Baseline 0.10 0.10 0.09 0.58 0.57 0.57 0.29 0.25 0.21

Extra-Coverage
Manual evaluation outside 
of Wikidata:
● Three pattern-based 

comparison systems: 
Yago, WiBi and DefIE.

● Precision lower than 
these approaches but 
competitive recall.

● Interesting follow-up in 
combining our model 
with pattern-based 
systems, in the line of 
Shwartz et al. (2016).

Data & Code

● BabelNet synsets 
clustered by 
domain.

● Wikidata and KBU 
isa branches.

● Python API

○ Word, synset 
and sense level.

○ Batch predict 
and interactive 
console.

taln.upf.edu/taxoembed
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